Pharyngealization in Two Varieties of Toussian

<u>Tajudeen Mamadou Y.</u>, University of Michigan <u>Anthony Struthers-Young</u>, UC San Diego

LSA 2025 January 11, 2025

Toussian

- Minority languages spoken in southwest Burkina Faso
- Niger Congo, potentially Gur (Mabia)
- There are two, potentially three Toussian languages
 - Northern Toussian
 - Southern Toussian
 - A third variety spoken in Moami and Tien, either divergent dialect of ST or separate language
- Each has around 20,000 speakers (SIL 1995)

Non-modal vowels

- In addition to modal and nasal vowels common to the region, they have a third type of vowel
 - "Glottalized vowels" (henceforth creaky) in Prost (1964)
 - "Pharyngeal vowels" by Wiesmann (reported in Winkelmann 2007) and Zaug-Coretti (2005)
 - There have been no prior phonetic studies of these vowels
- According to Prost, the creak/pharyngealization is stronger in Southern Toussian than Northern Toussian

Aims of the study

- 1. Determine the phonetic properties of these vowels
 - Are they pharyngeal or creaky?
 - What acoustic correlates do these vowels have?
- 2. Compare the phonetic correlates across the languages
 - What makes Southern Toussian vowel perceptually 'stronger'?

Toussian vowel system

- 8 vowel system—the vowels to the right and:
 - \circ /ə/ in NT
 - \circ /I/ in ST
- Corresponding set of phonemic nasal vowels for the cardinal vowels

Shared vowels of Northern and Southern Toussian

Toussian vowel system

- Non-modal vowels:
 - $\circ \qquad \mathsf{NT:} a^{\mathfrak{s}}, \, \tilde{a}^{\mathfrak{s}}, \, \varepsilon^{\mathfrak{s}}, \, \tilde{\varepsilon}^{\mathfrak{s}}$
 - $\circ \qquad \mathsf{ST:} a^{\mathfrak{s}}, \, \tilde{a}^{\mathfrak{s}}, \, e^{\mathfrak{s}}, \, \tilde{e}^{\mathfrak{s}}, \, o^{\mathfrak{s}}, \, \tilde{o}^{\mathfrak{s}}$
- Mid non-modal vowels are phonemic
- $[a^s]$ and $[\tilde{a}^s]$ allophones of /a/ and / \tilde{a} /
 - $\circ~~[a^{\varsigma}]$ and $[\tilde{a}^{\varsigma}]$ in open syllables, closed syllables with glide coda
 - \circ [a] and [\tilde{a}] in closed syllables with nasal or liquid coda (and γ in NT)

Toussian vowel system—ST examples

e	dê 🔹	'enter'	es	njē ^s 🔹	'cows'
0	kŏ 🔹	ʻplow (V)'	0 [°]	kó ^s 🔹	'sew'
а	dàl 🔹	'millet beer'	a°	dā ^s 🔹	'shea tree'
a	jār 🔹	'porridge (tô)'	a°.	ją́° 🔹	'four'

Toussian vowel system—NT examples

ε	kế	ʻgreen monkey (<i>Chlorocebus sabaeus</i>)'	£°	kēs ●	'neighborhood'
ĩ	wj <u></u>	'cord'	$ ilde{m{ extsf{arepsilon}}}^{ extsf{s}}$	wjĒ ^s 🔹	'hoe'
а	kār	ʻgrass (sp.)	a°	kā ^s	'surpass'
ã	jậr	'néré (<i>Parkia biglobosa</i>)'	ã°	já ^s 🔹	'heat up'

Creak and Pharyngealization

Acoustic correlates of creak

- There are diverse creaky phonation types (Keating et al. 2015, Garellek 2019, Esposito and Khan 2020)
 - Tense/pressed, stiff, creaky, laryngealized, glottalized, aperiodic, period doubled
- In general
 - Lower pitch
 - Iower f0
 - Higher noise
 - Lower harmonics to noise ratio (HNR)
 - Lower cepstral peak prominence (CPP)
 - Glottal constriction
 - Lower H1-H2/residual H1 (Chai and Garellek 2022)
 - Higher values reflect breathier vowels (this will be relevant later)

Rearticulation

- ST non-modal vowels often exhibit some degree of rearticulation
 - Constriction during the vowel, approaching a consonantal gesture
- Not seen in NT
- Rearticulation judged by strength of excitation (SOE), measuring the strength of voicing (Chai et al. 2023)
 - Lower values reflect more rearticulation

Visible rearticulation in waveform

	Pay
n	á ^r

ST ná^ç 'back (N)'

NT ná^ç 'listen'

Visible rearticulation in spectrogram

NT ná^ç'listen'

ST ná^ç 'back (N)'

Acoustic correlates to pharyngealization

- Pharyngeal vowels are produced with concomitant constriction in the pharyngeal cavity
 - \circ \qquad Often involves lowering and retraction of the tongue
- Pharyngeal articulations are coupled with laryngeal activity (Esling 2005)
 - $\circ \qquad {\sf Raising of the larynx} \\$
 - Aryepiglottic constriction
 - This means pharyngeal and creaky vowels are expected to have overlap in articulation and acoustics
- Pharyngeal-specific correlates (Al-Tamimi 2017)
 - Raising of F1 (vowel lowering)
 - Lowering of F2 (vowel backing)
 - Though in some languages, pharyngeals centralized, e.g., Archi (Arkhipov 2015), Mundabli (Faytak 2024)
 - Changes in F3—higher for front vowels and lower for back vowels (Tamimi 2017, Chiu and Sun 2020)

Summary of acoustic correlates

	Lower spectral tilt	↓H1-H2/resH1
Shared correlates (phonation)	Noisier	↓HNR/CPP
. ,	Rearticulation	↓SOE
	Lower vowel	↑F1
Pharyngealization-spec correlates (formant differences)	ific Retraction or centralization	R: ↓F2 C: ↓F2 for front vowels ↑F2 for back vowels
	F3 changes	↑F3 for front vowels, ↓F3 for back vowels

The study

Methods and data

- Wordlist built to elicit all vowels
 - NT words selected from personal research
 - ST words chosen from published ST dictionary (Barro et al. 2004)
- Words placed phrase-medially in carrier phrase
- Data from five speakers
 - Two NT speakers from Djigouera
 - Three ST speakers
 - One from Wempéa
 - Two from Toussiana

Methods and data

- Acoustic measurements made with VoiceSauce (Shue et al. 2011)
 - Measurements output every millisecond
 - For each token, averaged over the middle third of these measurements
- All measurements were standardized by speaker
- F1 and F2 outliers omitted by Mahalanobis distance (e.g., Riverin-Coutlée et al. 2023), F0 outliers also excluded
- Only oral vowels considered in this study due to difficulties collecting accurate measurements of nasal vowels

Research question 1: are these vowels truly pharyngeals?

- If yes, we expect:
 - Formant differences from modal vowels
 - Higher F1
 - Lower F2
 - Differences in F3 (depending on vowel frontness)
 - Phonation differences from modal vowels
 - Lower HNR, CPP, residual H1*
- If creaky but not pharyngeal:
 - Phonation changes without formant changes

Research question 2: what makes ST vowels 'stronger'?

- Hypothesis 1: ST has the same acoustic correlates to creak/pharyngealization as NT and only contrast in their magnitude
 - Difference in magnitude of acoustic correlates to creak/pharyngealization between creaky/pharyngeal vowels and modal vowels is greater in ST than NT
- Hypothesis 2: creaky/pharyngeal vowels in ST and NT have different acoustic correlates

Results

Southern Toussian

One issue

- There were few words with e^{ς} and o^{ς} in Wiesmann et al. (2004)'s dictionary
 - There are few tokens in the dataset, reducing statistical power
 - Because of this, there are some promising trends we see that are not statistically significant

-2

ST F1

- Pharyngeal a^ς higher
 F1 (lower)
- e^c and o^c same F1 (height) as modal vowels

ST F2

- a^c has lower F2 (backer)
- e^c has lower F2 (backer)

 Not significant
- o^c higher F2 (fronter)

 Not significant
- A trend towards centralization of mid vowels

ST F3

- F3 higher for front vowels (not significant)
- F3 lower for back vowels (not significant)
- A trend expected for pharyngeal vowels

ST HNR05

- o^c has lower HNR05 (noisier)
- Other vowels appear to have higher HNR05
 - not significant

ST ResH1*

- o^c has lower resH1* (which, together with noise, suggests more creak)
- Not significant for other qualities

ST Summary

- Non-modal vowels characterized by:
 - More noise (lower CPP and HNR05)
 - More creak (lower resH1* + lower CPP and HNR05)
 - Retraction and lower of a^{ς} (higher F1 + lower F2)
 - Rearticulation (lower SOE)
- Promising—but not significant—trends:
 - Centralization of mid vowels
 - Raising of F3 for front vowels and lowering of F3 for back vowels

Northern Toussian

NT F1

 Non-modal vowels have higher F1 (lower)

NT F2

• No difference in backness

NT F3

• No difference in F3

NT HNR05

- ε^ς has lower HNR05 (more noise)
- No significant difference between a^{ς} and a

NT CPP

- ε^ς has lower CPP (more noise)
- No significant difference between a^{ς} and a

NT resH1*

 Higher resH1* (breathier, when considering the noise)

NT summary

- Non-modal vowels characterized by:
 - More noise (lower CPP and HNR05)
 - Breathier (higher resH1* + lower CPP and HNR05)
 - Lowering (higher F1)

Discussion

- RQ1: Are these pharyngeal vowels?
 - Higher F1 in a^{ς} and ε^{ς} in NT, only a^{ς} in ST
 - ST centralization and F3 changes consistent with pharyngealization, but are not significant
 - Phonation differences appear to be the most reliable correlates to these vowels
 - Most significantly the differences in noise
- ST vowels more canonically pharyngeal—there appear to be differences in F1, F2, and F3 consistent with pharyngealization, as well as phonation changes
- The only formant correlates in NT are the differences in F1—all other correlates are phonation differences

Discussion

- RQ2: What makes ST non-modal vowels sound 'stronger' than NT?
 - Hypothesis 1: ST has the same acoustic correlates to creak/pharyngealization as NT
 - Hypothesis 2: creaky/pharyngeal vowels in ST and NT have different acoustic correlates
- Hypothesis 2 holds—NT vowels characterized by breathiness, not creakiness, and are not rearticulated

Conclusion

- The Southern Toussian non-modal vowels appear to be pharyngeal
- Less clear for Northern Toussian
- Their phonetic correlates vary by language, but they involve both formant and phonation changes
 - NT has lower, noisier, and breathier vowels
 - ST has noisier and creakier vowels that are often rearticulated, which appear to have formant changes consistent for pharyngeal vowels

References

Al-Tamimi, Jalal. 2017. Revisiting acoustic correlates of pharyngealization in Jordanian and Moroccan Arabic: Implications for formal representations. Laboratory Phonology: Journal of the Association for Laboratory Phonology 8(1). 28. https://doi.org/10.5334/labphon.19.

Arkhipov, Alexandre. 2015. The acoustic correlates of vowel pharyngealisation in Archi (East Caucasian).

Barro, Ketandi, Soungalo Coulibaly & Hannes Wiesmann. 2004. Wín wɛlɔ dúkúrí : Dictionnaire toussian-français, français-toussian. Banfora, Burkina Faso: Equipe toussian de la Société Internationale de Linguistique.

Chiu, Chenhao & Jackson T.-S. Sun. 2020. On pharyngealized vowels in Northern Horpa: An acoustic and ultrasound study. The Journal of the Acoustical Society of America 147(4). 2928–2946. <u>https://doi.org/10.1121/10.0001005</u>.

Chai, Yuan & Marc Garellek. 2022. On H1–H2 as an acoustic measure of linguistic phonation type. The Journal of the Acoustical Society of America 152(3). 1856–1870. https://doi.org/10.1121/10.0014175.

Chai, Yuan, Adrián Fernández & Briseida Mendez. 2023. Phonetics of glottalized phonations in Yateé Zapotec. In Proceedings of the 20th International Congress of Phonetic Sciences. Prague.

Esling, John H. 2005. There Are No Back Vowels: The Larygeal Articulator Model. Canadian Journal of Linguistics/Revue canadienne de linguistique 50(1–4). 13–44. https://doi.org/10.1017/S0008413100003650.

Esposito, Christina M. & Sameer Ud Dowla Khan. 2020. The cross-linguistic patterns of phonation types. Language and Linguistics Compass 14(12). e12392. <u>https://doi.org/10.1111/lnc3.12392</u>.

References

- Garellek, Marc. 2019. The phonetics of voice. In William F. Katz & Peter F. Assmann (eds.), The Routledge Handbook of Phonetics, 75–106. 1st edn. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge handbooks in linguistics: Routledge. <u>https://doi.org/10.4324/9780429056253-5</u>.
- Keating, Patricia, Marc Garellek & Jody Kreiman. 2015. Acoustic properties of different kinds of creaky voice. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow.
- Prost, André. 1964. Le Toussian. In André Prost (ed.), Contribution à l'étude des langues voltaïques (Mémoires de l'Institut Français d'Afrique Noire), vol. 70, 239–342. Dakar: Institut Fondamental d'Afrique Noire, Université de Dakar.
- Riverin-Coutlée, Josiane, Johanna-Pascale Roy & Michele Gubian. 2023. Using Mahalanobis Distances to Investigate Second Dialect Acquisition: A Study on Quebec French. Language and Speech 66(2). 291–321. https://doi.org/10.1177/00238309221097978.
- Shue, Y.-L., P. Keating , C. Vicenik, K. Yu. 2011. VoiceSauce: A program for voice analysis. Proceedings of the ICPhS XVII, 1846-1849.
- Winkelmann, Kerstin. 2007. Win (South Tusian). In Gudrun Miehe & Kerstin Winkelmann (eds.), Noun class systems in Gur languages: Vol. I Southwestern Gur Languages (without Gurunsi) (Gur Monographs), vol. 9, 566–603. Cologne: Rüdiger Köppe.
- Zaugg-Coretti, Silvia. 2005. Le syntagme nominal en Toussian du nord (langue voltaïque du Burkina Faso). Universität Zürich Master's Thesis.

Comparison

What makes ST non-modal vowels sound 'stronger' than NT?

Comparison of F1

• No significant difference in F1 between NT and ST pharyngeal vowels

Comparison of resH1* Comparison of resH1*

• NT has higher resH1* (is breathier)

Comparison of HNR05

• ST has lower HNR05 (noisier)

Comparison of CPP

• ST has lower CPP (noisier)

Comparison of SOE

• ST has lower SOE (more rearticulation)

